The value of (x + 3)(x − 2) is:
x² + x − 6
x² + x + 6
x² − x − 6
x² − x + 6
Simplify: (2a + 3b)²
4a² + 9b²
4a² + 6ab + 9b²
4a² + 12ab + 9b²
4a² + 9ab + 6b²
(a + b)² = ?
a² + b²
a² + 2ab + b²
a² − 2ab + b²
a² + ab + b²
Which one is a correct identity?
(a − b)² = a² + 2ab + b²
(a + b)² = a² − 2ab + b²
(a − b)² = a² − 2ab + b²
(a + b)² = a² − ab + b²
Simplify: (x − 5)(x + 5)
x² + 25
x² − 25
x² − 10x + 25
x² + 10x + 25
If a = 2, b = 3, what is the value of (a + b)²?
25
13
36
10
The expansion of (x + 2y)(x − 2y) is:
x² − 4y²
x² + 4y²
x² − 2xy
x² + 2xy
(a + b)³ = ?
a³ + b³ + ab
a³ + b³ + 3ab(a + b)
a³ + b³
a³ + b³ + 3a²b + 3ab²
a² − b² = ?
(a − b)²
(a + b)(a − b)
(a − b)(a + b)²
If x = 3 and y = 1, find the value of x² − 2xy + y²
4
9
16
2³ × 2⁴ = ?
2⁷
2¹²
2⁷⁴
2¹
(x³)² = ?
x⁵
x⁶
x⁹
x³
x⁴ ÷ x² = ?
x²
x⁸
x⁰
x⁰ = ?
x
0
1
∞
a⁻² = ?
1/a
−2a
1/a²
−a²
(a − b)² = ?
a² − ab + b²
(a + b)²
(a − b)(a − b)
(x + a)(x + b) = ?
x² + ab
x² + (a + b)x + ab
x² − ab
x² + x + ab
If x + y = 10 and xy = 21, find x² + y²
100
58
42
79
√(81a⁴) = ?
9a²
9a⁴
81a²
3a²
Simplify: (2a³b) ÷ (4ab²)
a² / (2b)
a²b / 2
2ab / 4
(a/b)² × (b/a)² = ?
ab
a² / b²
b² / a²
If a⁻¹ = 2, then a = ?
−2
2
0.5
(2x²)³ = ?
8x⁶
6x⁵
2x⁶
8x³